Корзина
4 отзыва
Бесплатная доставка по России! Спец. условия для дилеров.
8 (831) 415-76-26
Контакты
Нижегородский офис Группы компаний «Штиль»
Наличие документов
Знак Наличие документов означает, что компания загрузила свидетельство о государственной регистрации для подтверждения своего юридического статуса компании или индивидуального предпринимателя.
+78314157626
+79049000900
Василий Сорокин
РоссияНижегородская областьНижний Новгородул. Стрелка, д.4А, оф.201
shtyl-nn
Карта

Выбираем стабилизатор для котла: релейный или инверторный?

Выбираем стабилизатор для котла: релейный или инверторный?

Когда перед потребителем становится вопрос о приобретении стабилизатора напряжения возникает вопрос: как не ошибиться при выборе той или иной модификации? Что предпочесть: давно знакомый релейный классический или сравнительно новый инверторный?

Стабилизаторы для котла: релейный или инверторный. Какой выбрать?

Сегодня уже все понимают, что нестабильность напряжения в электрических сетях (особенно в загородной зоне) обусловливает необходимость приобретения оборудования, способного надежно защитить все имеющиеся электроприборы и устройства.

Перед потребителем становится вопрос о приобретении стабилизатора напряжения. Как не ошибиться при выборе той или иной модификации? Что предпочесть: давно знакомый релейный классический или сравнительно новый инверторный?

Рассматривая приоритетность при выборе того или иного защитного электрооборудования, надо оценить степень возможных эксплуатационных рисков имеющейся техники, а также необходимые и достаточные параметры устройств, призванных эту технику защищать.

Сопоставим параметры, которые представляются наиболее существенными:

  • обеспечение «чистого синуса» и точности удержания напряжения;
  • надежность и ремонтоспособность;
  • способность поддержания мощности в диапазоне напряжений;
  • перегрузочная способность;
  • собственная потребляемая мощность;
  • габариты, вес, цена и некоторые другие.

«Чистый синус» и точность удержания напряжения

Классический релейный стабилизатор обеспечивает точность 5-7 %,

Инверторный – 1- 2% и «чистый синус».

Что предпочесть в том или ином случае?

Попробуем разобраться на примере.

Мы знаем, что в настоящее время для отопления загородных домов обычно применяются газовые котлы, оснащенные насосами циркуляции теплоносителя. Циркуляционные насосы были изобретены в 1929-ом и начали массово применяться в бытовых котлах в 1950-х годах. И всё это время они прекрасно работали с «грязным синусом», и достаточной признавалась точность удержания напряжения 5 – 7%.

Релейные стабилизаторы транслируют сеть такой, какой она была 50 лет назад, есть и будет ещё, как минимум, столько же лет. И обеспечивают 5-7 процентов удержания. То есть обеспечивают необходимые и достаточные параметры стабилизации.

Что касается инверторных стабилизаторов, то до 1933 года, когда была доказана теорема Котельникова, электронные инверторы просто не существовали по причине отсутствия теоретических предпосылок, а потом до появления мощных и недорогих полевых транзисторов были очень дорогими.

Поэтому производители котлов не закладывали в регламент эксплуатации своих изделий требования к качеству сети (во всех странах это уже оговорено нормативами для энергопоставляющих компаний), оговаривая только рабочие и предельные напряжения, при которых котел будет работать долго.

Напрашивается вывод, что для обеспечения надежной эксплуатации современного котла достаточно наличия классического релейного стабилизатора соответствующей мощности. А наличие «чистого синуса» и точности 1 – 2 % в инверторных стабилизаторах не добавляет надежности работы оборудования. Эти параметры инверторов в данном случае напоминают рекламный ход, как, к примеру, на упаковке моющего средства пишут – «20% - бесплатно».

В случае же необходимости защиты точной измерительной или медицинской аппаратуры данные параметры инверторов могут быть актуальными.

Надежность и ремонтоспособность

Надежность оборудования определяется многими факторами. Самыми явными из них являются качество и количество комплектующих элементов, применяемых при производстве изделий.

Если исходить из того, что производители и тех и других стабилизаторов гарантируют высокое качество элементной базы, то следует оценить количественную составляющую.

Крепёжные изделия, краску и другие малосущественные компоненты в расчет не берем. Сравним количество электроэлементов.

Классический стабилизатор построен проще и включает в себя от 50 до 80 элементов и выделяет при работе минимум тепла.

В инверторном комплектующих в 3 - 5 раз больше и выделение тепла весьма существенно, что обусловливает необходимость наличия большого радиатора или вентилятора.

А теперь немного теории. Надежность изделия зависит от надежности каждого входящего элемента и количества этих элементов. Кроме того, повышение температуры на 10 градусов снижает надежность (в литературе приводятся различные цифры, вплоть до уменьшения срока службы в 2 раза).

Если принять надежность одного элемента равной 0,99, то суммарная надежность трех элементов составит: 0,99х0,99х0,99=0,97 (т.е. вероятность отказа 3%), а при наличии 10 элементов этот показатель будет равен 0,90 (т.е. вероятность отказа 10%).

Конечно, современные элементы имеют надежность выше 0,99, но тенденция снижения надежности при увеличении количества элементов весьма показательна.

Можно возразить, что при наличии большого количества элементов наши телевизоры, компьютеры, стиральные машины нормально работают годами. Но не стоит забывать, что бытовая техника работает далеко не полные сутки, а стабилизатор, не выключаясь, должен работать постоянно.

Практика эксплуатации классических стабилизаторов показывает, что они могут работать 10 лет и более. По инверторным моделям такой статистики пока просто нет.
Мы знаем, что любая, даже самая качественная, техника порой требует ремонта. И потребителю небезразлично, насколько легко или сложно будет этот ремонт осуществить.

В течение гарантийного периода и при наличии доступной сервисной службы ремонт будет сделан по крайней мере бесплатно, хотя сроки, скорее всего, будут зависеть от сложности ремонта. А в иных случаях могут возникнуть проблемы, связанные с ремонтопригодностью изделия.

Ремонтопригодность стабилизаторов определяется несколькими параметрами.

Это плотность монтажа, легкость или сложность доступа к элементам. Это необходимость наличия того или иного оборудования для демонтажа и монтажа ремонтируемого изделия, наличия приборов и стендов для его наладки и тестирования. Это доступность элементной базы в случае необходимости замены неисправных деталей. И, конечно же, требования к квалификации ремонтного персонала.

Классические релейные стабилизаторы имеют низкую плотность монтажа и их элементная база не предполагает редких и дефицитных микросхем. Используемые приборы просты, а в качестве стенда обычно можно просто использовать ЛАТР. Поэтому требования к квалификации ремонтного персонала не особенно высоки, можно сказать, что достаточна квалификация на уровне гаражного радиолюбителя. Понятно, что при таких условиях ремонт не будет большой проблемой для потребителя.

С инверторными стабилизаторами картина совершенно иная. Компоновка здесь плотная, и основная масса элементов – это SMD, специализированные микросхемы. Для монтажа и демонтажа SMD потребуется приобрести специальное оборудование, а замена таких микросхем невозможна без хорошей паяльной станции. Кроме того, сами эти элементы не всегда можно будет легко приобрести, а в небольших населенных пунктах их покупка будет практически нереальна. Из оборудования обязателен осцилограф с приличной полосой пропускания. Понятно, что квалификация персонала должна быть не ниже инженера. И скорее всего придется обращаться к производителю.

Очевидно, что ремонт релейного стабилизатора представляется более доступным, чем ремонт инверторного, как по срокам, так и по цене.

Способность поддержания мощности в диапазоне напряжений

Классический стабилизатор поддерживает полную мощность во всем заявленном диапазоне напряжений.

Инверторный поддерживает полную мощность лишь в части заявленного диапазона напряжений, при дальнейшем снижении входного напряжения отдаваемая мощность снижается. Поэтому при выборе инверторного стабилизатора следует учитывать нужную мощность с возможным снижением входного напряжения. И при необходимости придется выбирать стабилизатор с запасом.

Перегрузочная способность

На практике, как правило, необходимо считаться с периодически возникающими перегрузками в сети, связанными, например, с пусковыми токами.
Защитное оборудование, каковым является стабилизатор, должно обладать способностью выдерживать эти перегрузки в течение определенного времени. Либо обладать запасом по мощности.

Классический стабилизатор способен выдерживать перегрузки в три – четыре раза в течение десятков секунд, что вполне достаточно при запуске того или иного электрооборудования, будь то прибор освещения или двигатель. Это может быть стиральная машина, холодильник, пылесос или котел и т.д. При выборе классического стабилизатора некоторый запас можно предусмотреть, но для малых мощностей не обязательно.

Инверторные же стабилизаторы, если и могут держать перегрузку, то это время измеряется лишь несколькими секундами или даже долями секунды. Поэтому запас по мощности при выборе инверторного стабилизатора просто необходим. Так для холодильника запас должен быть, как минимум, вдвое, а скорее всего втрое, для погружных насосов - в четыре – пять раз.
Это означает, что применение инверторных стабилизаторов при работе с подобными нагрузками существенно ограничено или просто дорого.

Собственная потребляемая мощность

Совершенно очевидно, что и тот и другой стабилизаторы будут сами потреблять энергию на обеспечение своей работы.

Классический стабилизатор потребляет энергию на 3 реле, индикацию и контроллер. Общий ток порядка 100мА при напряжении 12В (3 реле: 30мА х3 = 90мА). С учетом потерь на источник питания (умножим на 3) имеем в худшем случае 3,6Вт. Это справедливо для моделей до 1000ВА. Стабилизаторы от 4500ВА до 40000ВА имеют потребляемую мощность 15 – 20Вт.

Собственная мощность инверторных стабилизаторов зависит от полной мощности той или иной модели. Для моделей 350ВА это 25Вт, для 3500ВА – 40Вт, для 12000ВА – 75Вт, для 13500 это уже 150Вт и т.д.

Простой расчет показывает, что инверторный стабилизатор мощностью 350ВА за год «съест» энергии на сумму более 1000 рублей, 12000ВА более 3000 рублей, а 13500 ВА соответственно еще в 2 раза больше, т.е. более 6000 рублей.

По классическим даже мощным моделям эти затраты не превысят 1000 рублей в год.

Очень краткие выводы

Классический релейный стабилизатор

Достоинства:

  • Точность удержания напряжения достаточна для работы котла.
  • Не искажает форму сети.
  • Поддерживает полную мощность во всем заявленном диапазоне напряжений.
  • Простая схемотехника, легко ремонтируется.
  • Надежен, выпускается очень давно.
  • Выдерживает большие перегрузки.
  • Не шумит.
  • Потребляет мало энергии на обеспечение собственной работы.

Недостатки:

  • Большой вес.
  • Высокая цена силового трансформатора

Инверторный стабилизатор

Достоинства:

  • мгновенное быстродействие – исключает трансляцию возмущающего воздействия с входа стабилизатора на его выход и, в следствие этого, предохраняет электронные компоненты котла от повреждений при резком сетевом перепаде;
  • широкий диапазон стабилизации (90 - 310 В) – позволяет эксплуатировать стабилизатор, а значит и подключенный к нему котёл при экстремально сильных колебаниях входного напряжения;
  • высокая точность стабилизации (±2%) – гарантирует снабжение котла напряжением с номинальным (предельно близким к номинальному) значением;
  • плавная регулировка – исключает характерные для релейных и электронных стабилизаторов ступенчатые скачки напряжения;
  • «чистая» синусоида на выходе – обеспечивает исправную и корректную работу всех энергозависимых узлов котла;
  • наличие «сквозного нуля» для корректной работы фазозависимых котлов;
  • фильтрация входных и выходных помех – устраняет приходящие из сети помехи и предотвращает попадание «нагрузочных» помех в сеть. Данная функция способствует «комфортной» работе как чувствительной автоматики котла, так и включенных в ту же сеть прочих потребителей электроэнергии;
  • многоуровневая система защиты – отключит котёл при возникновении аварийной сетевой ситуации, а также при выходе из строя (перегреве) самого стабилизатора. После нормализации сетевых параметров (состояния стабилизатора) электропитание отопительного прибора будет автоматически восстановлено;
  • небольшие габариты – дают возможность сэкономить пространство и расположить стабилизатор в непосредственной близости от защищаемого котла. Кроме того, некоторые модели стабилизаторов имеют несколько вариантов установки, что позволяет разместить прибор наиболее удобными способом;
  • современный дизайн – позволяет интегрировать стабилизатор в интерьер помещения, не нарушая его стилистику.

Недостатки:

  • Снижение выходной мощности при снижении входного напряжения.
  • Сложная схемотехника и, как следствие, снижение надежности и сложность ремонта.
  • Низкая перегрузочная способность.
  • На мощностях выше 500 – 700ВА необходим вентилятор, который будет источником шума.
  • Значительная потребляемая мощность на управление.
vkontakte facebook twitter
Предыдущие статьи